SIMULATIONS OF POWER
ANALYSIS FOR COMPLEX
EXPERIMENTAL DESIGNS IN R

Giulio Costantini

14/05/2021

Preliminary Operations
Download slides here: https://bit.ly/3310ro8

These slides assume that a recent version of R (4.0.5) and Rstudio (1.4.1103) are
installed on your computer.

¢ Rhttps://cran.r-project.org/.
¢ Rstudio https://www.rstudio.com/

Here | include a list of required packages and the code to automatically install and load
them. Command set.seed ensures that all simulation results replicate exactly each time
the slides are compiled.

if(!require("pacman")) install.packages("pacman™)

pacman: :p_load("MASS", "psych", "dplyr", "ggplot2", "reshape2",
"powerMediation", "bmem", "shiny", "lme4",
"lmerTest", "simr", "prepdat")

set.seed(1)

load("data/BKP.RData")

The slides embed R code to get all results shown. However, | have pre-run and saved some results that
would require along time to run. Set eval = TRUE in an Rstudio chunk if you want to runiit.

Most of this presentation (particularly the part about mediation) is based on Perugini, Gallucci, &
Costantini (2018).

Power and Simulation

The idea behind using simulation for power analysis is quite straightforward. If power
of astatistical test is the probability of successfully rejecting HO if H1 is true, one can

determine power by

1. defining the expected values of the population parameters under H1
2.generating a sample of size N from the population parameters
3. testing the significance of the target effect using the preferred statistical method

4. replicate steps 2 and 3 a large number of times
5. estimating power as the proportion of simulated samples in which HO is rejected

Power and Simulation
The necessary ingredients are thus
¢ aset of values of population parameters under H1 (~effect size),

¢ amethod for simulating data,
¢ astatistical test for deciding whether to reject HO.

Todays roadmap

1. Power analysis for a two-sample between subject t-test. This is of course not
useful per se (analytic methods work nicely), but it allows understanding the
general logic behind power simulations and it gives you the instruments for
implementing your own simulations.

2. Power anlaysis for mediation.
3. Power analysis for mixed models

Between-subject t-test

Power for a t.test in R - analytic solution

In R, we can estimate power for a two-sample with function power.t.test. Given three
among \(\alpha\), effect size (in terms of difference between means and sd), sample
size, and power, this function returns the fourth element. For example, the following
code estimates power in a between-subject two-sample t-test under the following

conditions:

¢ Adifference between means equal to delta = 0.50 and a standard deviation of sd = 1
(corresponding to a Cohen'sd =.50)

o Atwo-sided t-test at the conventional level \(\alpha =.05\).
e n=64subjects by group

power.t.test(sig.level = .05,
delta = .5,
sd =1,
n = 64,
power = NULL)

Power for a t.test in R - analytic solution

power.t.test(sig.level = .05,
delta = .5,
sd =1,
n = 64,
power = NULL)

Two-sample

n
delta

sd
sig.level
power
alternative

t

m o mwnnn

NOTE: n is number

test power calculation

64

0.5

1

0.05
0.8014586
two.sided

in *each* group

Steps

Let's try and reproduce the same results using simulation!

1. define the expected values of the population parameters under H1

2.generate a sample of size N from the population parameters

3. test the significance of the target effect using the preferred statistical method
4. replicate steps 2 and 3 a large number of times

5. estimate power as the proportion of simulated samples in which HO is rejected

Steps

Let's try and reproduce the same results using simulation!

1. define the expected values of the population parameters under H1
2.generate asample of size N from the population parameters

3. test the significance of the target effect using the preferred statistical method
4. replicate steps 2 and 3 alarge number of times

5. estimate power as the proportion of simulated samples in which HO is rejected

Define population parameters under H1 (1)

Let's assume a bivariate normal distribution with SDs = 1 and cor = O, one variable has
M =0 and the other hasM =0.5.

The following code creates a vector of means called mu and a covariance matrix called
Sigma that describe our population parameters.

mu <- c(@, .5)
Sigma <- matrix(c(1, o,
e, 1),
ncol = 2)

Define population parameters under H1 (1)

mu
[1] ©.0 8.5
Sigma

[,1] [,2]
1 e

[2,1] e 1

Steps

1. define the expected values of the population parameters under H1
2.generate a sample of size N from the population parameters

3. test the significance of the target effect using the preferred statistical method
4. replicate steps 2 and 3 a large number of times

5. estimate power as the proportion of simulated samples in which HO is rejected

Generate a sample (1)

R offers several packages and functions to simulate data from a multivariate normal
distribution.

For example, function mvrnorm in package MASS requires as input a sample size n,a
vector of means mu, and a covariance matrix Sigma as those that we have just created
(type ?mvrnorm in the R console for info). We can save the simulated data in a matrix
called simData.

simData <- MASS::mvrnorm(n = 64,
mu = mu,
Sigma = Sigma)

We can use function head to inspect the first 6 cases of simData.

head(simData)

[,1] [,2]

[1,] ©.08607881 1.2309363
[2,] -0.58638186 ©.2259920
[3,] -0.81503297 ©0.9497791
[4,] ©.68771552 ©.9534433
[5,] 1.05743079 -1.6429211
[6,] -©.80565896 ©.1548838

Generate a sample (2)

Function pairs.panels allows visualizing We can use function colMeans to
the data as well as their correlation compute the means of the two variables.
round is used to round the result to two
pairs.panels(simData) decimals.

o colMeans(simData) %>%
o REY round(2)

var 1

-0.18 [1] -0.03 ©.34

Tip.“%>%"is a function in package dplyr
that allows using the output of a function
as the first input of the subsequent
function, resulting in tidier coding.

15 20

var 2

Steps

1. define the expected values of the population parameters under H1

2.generate a sample of size N from the population parameters

3. test the significance of the target effect using the preferred statistical method

4. replicate steps 2 and 3 a large number of times
5. estimate power as the proportion of simulated samples in which HO is rejected

Test for significance (1)

At.test can be performed using function t.test. In the following code, the results are
saved to a variable called tt. Setting var.equal = TRUE ensures that a Student t-test is
performed as opposed to a Welch t.test (for more information type ?t.test)

tt <- t.test(x = simData[,1],
y = simData[,2],
alternative = "two.sided",
var.equal = TRUE)

nn

B

Two Sample t-test

data: simData[, 1] and simData[, 2]
t = -2.3616, df = 126, p-value = ©.01973
alternative hypothesis: true difference in means is not equal to ©
95 percent confidence interval:
-0.67671412 -0.05965236
sample estimates:
mean of x mean of y
-0.02574118 0.34244206

Test for significance (2)

We can extract the p-value from variable tt using the following code
ttép.value

[1] ©.01972947

We can contrast it to the conventional value \(\alpha =.05\) to check whether the
statistical test suggests to reject HO (TRUE) or not (FALSE).

tt$p.value < .05
[1] TRUE
Notice that in R (as in other languages) the logicals FALSE and TRUE can be treated as if

they were numeric values of 0 and 1 respectively. To count instances in which some
operation gives a result TRUE, one can just sum logicals.

Steps

Let's try and reproduce the same results using simulation!

1. define the expected values of the population parameters under H1

2.generate a sample of size N from the population parameters

3. test the significance of the target effect using the preferred statistical method
4. replicate steps 2 and 3 a large number of times

5. estimate power as the proportion of simulated samples in which HO is rejected

Replicate steps 2 and 3 (1)

Now let's replicate steps 2 and 3 1000 times. This time we will save our p-valuesin a
vector, called p.values

First we create an empty vector called p.values

p.values <- c()

Replicate steps 2 and 3 (2)

Second, we wrap the code we developed so far within a for loop with B = 1000
replications. The last row within the loop stores the p-value in vector pvalues.

B <- 1000
for(i in 1:B)
{
simData <- mvrnorm(n = 64,
mu = mu,
Sigma = Sigma)

tt <- t.test(x = simbatal,1],
y = simData[,2],
alternative = "two.sided",
var.equal = TRUE)

p.values <- c(p.values, tt$p.value)

}

Note. Albeit R offers faster alternatives to for loops (e.g., lapply, apply etc.), | use loops
here, because what they do is immediately clear.

Steps

1. define the expected values of the population parameters under H1

2.generate a sample of size N from the population parameters

3. test the significance of the target effect using the preferred statistical method

4. replicate steps 2 and 3 a large number of times

5. estimate power as the proportion of simulated samples in which HO is rejected

Estimate power

We can estimate power simply as the proportion of simulated samples in which HO is
rejected. If we use the conventional alpha level of .05, power is simply the proportion
of our B= 1000 cases in which p < .05.

\[\fracf\sum_{i = 1}*B (p_i < .05)¥B}\]

We expect this number to be close to our the value of .80 that we estimated using the
analytic procedure above. The higher B, the higher the accuracy of our power
estimate

sum(p.values < .05) / B

[1] ©.807

Extensions

Given three elements among power, sample size, effect size, and alpha level, one can

get the fourth. We used simulation to estimate power from the other three elements.

In Gpower, this corresponds to Post hoc power.
The other two most widespread scenarios are:

o A priori power analysis: N is unknown.
o Sensitivity power analysis: effect size is unknown.

The simplest solution is performing a simulation for post-hoc power analysis under
different scenarios, including different sample sizes and/or effect sizes and then
inspecting which scenarios offer enough power.

Of course, this can easily become computationally cumbersome.

Extensions: A priori power, N unknown (1)

In the following code, we explore several possible values of N (from 10 to 120 in steps
of 10).

We first create a vector N which includes the desired sample sizes, each one repeated
B times using function rep. The for loop is now around N, each time data are simulated
with a different sample size \(n\in N'\).

p.values <- c()

B <- 1000

N <- seq(from = 10, to = 120, by = 10) %>%
rep(each = B)

for(n in N)
{
simData <- mvrnorm(n = n, # <- notice the varying sample size
mu = mu,
Sigma = Sigma)

tt <- t.test(x = simDatal[,1],
y = simData[,2],
alternative = "two.sided",
var.equal = TRUE)

p.values <- c(p.values, tt$p.value)

}

Extensions: A priori power, N unknown (2)

We can assemble the results in a dataframe.

Within the dataframe, we include a variable, called Sig.res, indicating whether each
result turned out significant (p < \(\alpha\)) or not.

results <- data.frame(N, p.values)
results <- mutate(results, sig.res = p.values < .05)
head(results)

N p.values sig.res
10 ©.3122438 FALSE
10 0.5559785 FALSE
10 ©.2883535 FALSE
10 0.0217494 TRUE
10 0.4288805 FALSE
10 0.2542485 FALSE

AUV hAWNER

Tip. mutate is a function in the R package dplyr that computes new variables in a
dataframe.

Extensions: A priori power, N unknown (3)

We can compute power as the proportion of times a significant result is observed.
However, this time we need to compute power separately for each N. We save the
result in a dataframe called smm.

smm <- group_by(results, N) %>%
summarize(power.sim = mean(sig.res))
smm

Tip. Function group_by in package dplyr, when combined with summarize, allows
performing summary statistics on groups of cases. In this case, the grouping variable is
N and the summary statistic is simply the mean of sig.res, which is equivalent to the
proportion of times a result turned out significant.

Extensions: A priori power, N unknown (3)

smm <- group_by(results, N) %>%
summarize(power.sim = mean(sig.res))
smm

A tibble: 12 x 2
N power.sim

* <dbl> <dbl>
i 10 0.182
2 20 0.303
3 30 0.477
4 40 0.634
5 50 0.696
6 60 0.792
7 70 0.827
8 80 0.874
9 90 0.908
10 100 0.941
11 110 0.949
12 120 0.976

Extensions: A priori power, N unknown (4)

Let's contrast our results with those obtained analytically using power.t.test Notice
that power.t.test can take as input also a vector for each parameter. In this case, it will
estimate the unknown parameter under all conditions

an.res <- power.t.test(sig.level = .05,
delta = .5,
sd =1,
n = smm$N)
smm$power.analytic <- an.res$power
smm

A tibble: 12 x 3
N power.sim power.analytic

<dbl> <dbl> <dbl>
1 10 0.182 0.184
2 20 0.303 0.338
3 30 0.477 0.478
4 40 0.634 0.598
5 50 0.696 0.697
6 60 0.792 0.775
7 70 0.827 0.836
8 80 0.874 0.882
9 90 0.908 0.916
10 100 0.941 0.940
11 110 0.949 0.958
12 120 0.976 0.971

Extensions: A priori power, N unknown (5)

We can also plot the results. First we can convert the smm data in long format using
function melt in package reshape2 and save the result in a new dataframe, called
smm_melt.

smm_melt <- melt(smm,

id.vars = "N",
value.name = "power",
variable.name = "type")
head(smm_melt)
N type power

1 10 power.sim ©.182
2 20 power.sim ©.303
3 30 power.sim ©.477
4 40 power.sim 0.634
5 50 power.sim 0.696
6 60 power.sim ©.792

Extensions: A priori power, N unknown (6)

Second, we can visualize them in ggplot.
ggplot(smm_melt, aes(x = N, y = power, color = type)) +

geom_point() +
geom_line()

type

- poner.analytic

pover
3

Extensions: Sensitivity, explore different effect sizes

Homework. Explore different values of

Cohen'sd (es. .2, .4, .6, ..., 2), by keeping

the sample size fixed to N = 64 in each

group. You should be able to produce the

plot showed here.

¢ Tip 1: Most code is just copy-paste
from above.

e Tip 2: If the standard deviation is f
equal to 1, Cohen'sdis just the /
difference between the means of the oo 4 ‘ i
two groups (e.g., if you assign a group "o
mean =0 and the other = 1, you get d
=1).

e Tip 3:in R there are always many ways
to do something. If you want to see
how | did it, just check the code
running behind this slide and you'll
find a solution. Your code does not
need to be identical to mine as long as
you get the correct result.

Extensions to other analyses
The method that we have just seen is not limited to the between-subject t-test, but it
can be applied in any situation in which we have the necessary ingredients

o Aset of values of population parameters under H1 (~effect size),

¢ amethod for simulating data,
* astatistical test for deciding whether to reject HO.

Furthermore, R packages have been implemented that save you the burden of
programming simulations from scratch. In the next slides, we will see some examples
of how this logic can be applied to more complex situations.

¢ Mediation analysis

Mediation analysis

Refresher on mediation analysis (1)

In mediation analysis, we are interested in the indirect effect that a predictor X has on
aresponse Y through a mediator M. Within Baron & Kenny's (1986) framework, the
indirect effect can be estimated as the product of two path coefficients, \(a*b \). We
will assume that all variables are standardized withM =0 and SD = 1.

Coefficient \(a\) is the slope of a simple linear regression
\(M=aX\)
Coefficients\(b\) and \(c\) are the slopes of a multiple regression

\(Y=bM+cX\)

a=.8186 IVI b =.4039

c=.4334

Refresher on mediation analysis (2)

In the example below, the indirect effect is \(.8186 *.4039 =.3306\). This means that,
when X increases of 1SD, Y increases through M of .3306 SDs and it increases of
additional .4334 SDs independent of M.

Under the assumption that \(a*b\) is normally distributed, the indirect effect can be
tested through Sobel's (1982) test. Power for Sobel test can be determined
analytically, for example with package powerMediation (Qiu, 2017).

a=.8186 M b =.4039

c=.4334

Power for mediation analysis - analytic solution (1)

function powerMediation.Sobel in package powerMediation computes power for a
Sobel test. However, the parameters to set are not very intuitive. Input parameters are

()

n, the sample size
theta.1a, path coefficient a (in our case, .8186)
lambda.1a, path coefficient b (in our case, .4039)

sigma.x and sigma.y, the SDs of X and M respectively (in our case, both = 1, because
we assume standardized variables).

sigma.epsilon, which is the standard deviation (\(\sigma_\epsilon\)) of the error
term (\(\epsilon\)) in the multiple regression\(Y =b_1 X +b_2 M +\epsilon\).
sigma.epsilon can be determined given a, b, and c using the following formula

\[\sigma_\epsilon = \sqrt{1-(b*2+c”2+2abc)}\]

In our case, this amounts to \[\sigma_\epsilon = \sqrt{1-
(.403912+.433472+2*8186*4039*4334)}=.6020\]

Power for mediation analysis - analytic solution (2)

If we plug the arguments in function ssMediation.Sobel, we get a power of .96

powerMediation.Sobel(n = 100,

[1] ©.9607992

theta.la .8186,
lambda.a .4039,
sigma.x = 1,

sigma.m = 1,
sigma.epsilon = .6020)

Power for mediation analysis - analytic solution (3)

Function ssMediation.Sobel allows performing apriori power analysis, by specifying
the desired power instead of the sample size n. The results show that for 80% power,
inour case we would need at least 57 participants.

ssMediation.Sobel(power = .80,
theta.la = .8186,
lambda.a = .4039,

sigma.x = 1,
sigma.m = 1,
sigma.epsilon = .6020)

[1] 56.71795

Power for mediation analysis - simulation in bmem (1)

The assumption that the sampling distribution of the indirect effect \(a*b) is normal
has been shown to be untenable and particularly problematic with small sample sizes.
For this reason, the indirect effect is often tested using bootstrap (e.g., Preacher &
Hayes, 2004).

If bootstrap is used, analytic formulas for power are not available. As we have learned,
in cases like this one, simulation can help. Fortunately, we do not need toset up a
simulation from scratch, as R package bmem implements what we need.

Steps

1. define the expected values of the population parameters under H1
2.generate a sample of size N from the population parameters

3. test the significance of the target effect using the preferred statistical method

4. replicate steps 2 and 3 a large number of times
5. estimate power as the proportion of simulated samples in which HO is rejected

Power for mediation analysis - simulation in bmem (2)

First, we need to specify the values of population parameters under H1, using a syntax
that is taken from the R package lavaan (a package for structural equation models;
Rosseel, 2012). In short, a model is a text string, each new line specifies either

regression (“~") or a variance (“~~"). start() is used for specifying population values for
each coefficient under H1.

model <-'

M ~ a*X + start(.8186)*X

Y ~ b*M + c*X + start(.4039)*M + start(.4334)*X
X ~~ start(1)*X

M ~~ start(1)*M

Y ~~ start(1)*Y'

e The first row specifies the regression \(M = aX)
¢ The second row specifies the regression \(Y = bM + cX\)
e The last three rows only specify that all three variables have unitary variance

Steps

Package bmem takes care of implementing steps 2 to 5 for us with little programming.

1. define the expected values of the population parameters under H1

2.generate a sample of size N from the population parameters

3. test the significance of the target effect using the preferred statistical method
4. replicate steps 2 and 3 a large number of times

5. estimate power as the proportion of simulated samples in which HO is rejected

Power for mediation analysis - simulation in bmem (3)

Once a model is specified, function power.boot() performs all the bootstrap simulation

for us. We need to specify the model previously defined and the number of
observations (nobs).

Argument indirect specifies the indirect effect for which we wish to get power, using
the special assignment symbol (“:="). In this case, we want to obtain power for the
product of coefficients a and b.

power.result <- power.boot(model,
indirect = 'ab := a*b’,
nobs = 100,
ncore = 7)

summary (power.result)

However, | recommend NOT to run the previous code, unless you can wait many
hours. The code entails B = 1000 repetitions, each one involving 1000 Monte Carlo
samples. | copy-paste the output in the next slide!

Power for mediation analysis - simulation in bmem (4)

bmem Output suggests that we have 96.6% power to detect the indirect effect.

Basic information:

Estimation method ML
Standard error standard
Number of requested bootstrap 1000
Number of requested replications 1000
[Number of successful replications 1000
True Estimate MSE SD Power Power.se Coverage
Regressions:
M~
X (a) 0.819 0.826 0.100 0.104 1.000 0.000 0.942
Y ~
M (b) 0.404 0.402 0.101 0.105 0.966 0.006 0.933
X (c) 0.433 0.431 0.131 0.129 0.897 0.010 0.946
Variances:
X 1.000 0.989 0.136 9.135 1.000 ©0.000 9.927
M 1.000 0.978 0.135 0.135 1.000 0.000 0.921
Y 1.000 0.974 0.134 0.140 1.000 0.000 0.894

Indirect/Mediation effects:
ab 0.331 0.332 0.094 0.095 0.966 0.006 0.928

Schoemann’s approach (1)

An alternative for reducing computational requirements have been proposed by
Schoemann (2017).

¢ First, instead of bootstrap confidence intervals, they use a faster alternative, the
so-called Monte Carlo confidence intervals, which assume that\(a\) and \(b) are
normally distributed, without making assumptions on the distribution of their
product (for details, see Preacher & Selig, 2012).

e Second, they use a varying sample size approach: Instead of fixing N for all
simulated samples, a value of N is picked at random in the range of specified values.
Each simulated sample has thus a different N.

¢ Third, the fact that a significant (vs. nonsignificant) value is predicted from N using a
logistic regression approach. Power (i.e., the probability of obtaining a significant
result) can be then predicted from the logistic regression equation given any

sample size N within the range of interest.

Schoemann’s approach (2)

The analysis is implemented in a Shiny app and requires no programming. The app can
be found at this link

https://schoemanna.shinyapps.io/mc_power_med/
Or it can be run in Rstudio on one's computer, using the following code.
runGitHub("mc_power_med", "schoam4")

This code assumes that package shiny has been previously loaded.

Schoemann’s approach (3)
Instead of \(a\),\(b\),and \(c\), one needs to specify correlations between X, Y, and
M. These can be easily obtained using the following formulas.

e \(r_{mx}=a\)inourcase.8186

o \(r_fyx}=c+a*h\)inourcase.7640

o \(r_{ym}=b+a*c\)inourcase.7587

If we assume that the variables are all standardized, we can leave the values of
standard deviation to the default value of 1.

Schoemann’s approach (4)

In the Shiny app, one has to plug in the values computed and then select one of the two
approaches

o Set N, Find power is equivalent to post-hoc power analysis in Gpower. In this case, a
specific sample size is specified.

o Set power, vary N is equivalent to a priori power analysis in Gpower. In this case, a
range of plausible sample size needs to be specified. More advanced models with
two mediators are available in the Shiny app (for details, see Schoemann, 2017).

